Abstract
Ethnopharmacological relevanceDiminished ovarian reserve (DOR) was considered a refractory reproductive endocrine condition that negatively affected female reproductivity. Yangjing Zhongyu Decoction (YJZYD) had effects on treating infertility. However, there were few studies on the mechanisms of YJZYD preserving ovarian reserve. Aim of the studyTo explore the possible mechanisms of YJZYD against DOR by UPLC-ESI-MS/MS, network pharmacology, and experimental validation. MethodsThe chemicals of YJZYD were measured by UPLC-ESI-MS/MS. The correlating targets of YJZYD and DOR were identified by the ETCM database, GeneCards database, and PubMed database. The common targets were employed with the DAVID database and visualized with the PPI network. GO and KEGG enrichment analyses were carried out to explore biological progression and pathways. In vivo experiments, energy production was assessed by ATP, and apoptosis rate was analyzed by TUNEL. The serum FSH, AMH, and E2 levels were evaluated by ELISA. Western blotting and immunohistochemistry were used to measure the expression of SIRT1, PGC1α, NRF1, COX IV, FSHR, CYP19A1, PI3K, p-Akt, Akt, Bcl-2, and Bax. Results132 components in YJZYD were identified by UPLC-ESI-MS/MS. 149 overlapped targets were extracted from YJZYD and DOR, and the top 20 common targets included AKT1 and CYP19A1. ATP binding was involved in GO analysis. In the KEGG enrichment analysis, the metabolic pathway was the top, and the PI3K-Akt signaling pathway was included. In vivo experiments, YJZYD improved ovarian index and histomorphology. After YJZYD treatment, serum FSH, E2, and AMH were well-modulated, and the content of ATP was up-regulated. Besides, the expression of Bax was suppressed in ovarian tissue, while the expressions of SIRT1, PGC1α, NRF1, COX IV, FSHR, CYP19A1, PI3K, Bcl-2, and p-Akt/Akt were enhanced. ConclusionYJZYD could attenuate reproductive endocrine disturbance and ovarian lesions in vivo by mediating steroidogenesis, energy metabolism, and cell apoptosis. This study uncovered the mechanisms of YJZYD against DOR, providing a theoretical basis for further study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.