Abstract

Monkeypox outbreaks across the globe has aroused widespread concern. Ruyi Jinhuang Powder (RJP), a common formula in Chinese medicine, is used to treat pox-like illnesses. This study aimed to identify the molecular mechanisms and therapeutic targets of RJP for the treatment of monkeypox using network pharmacology and bioinformatics techniques. The bioactive substances and potential targets of each component of RJP were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The differentially expressed genes (DEGs) of the monkeypox virus (MPXV) were identified from the GSE24125 by GEO2R. Key signaling pathways, bioactive components, and potential targets were obtained by bioinformatics analysis, including gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), disease ontology (DO), and protein-protein interactions (PPI) analyses. Finally, molecular docking was used to predict the interaction between active compounds and core targets. A total of 158 active ingredients and 17 drug-disease-shared targets of RJP were screened. Bioinformatics indicated that wogonin and quercetin might be potential drug candidates. Potential therapeutic targets were identified. Immune-related mechanisms that exerted antiviral effects included signaling pathways like TNF, age-rage, and c-type lectin receptor pathways. Our results illustrated the good therapeutic effect of RJP on monkeypox in terms of biological activity, potential targets, and molecular mechanism. This also offered a promising strategy to reveal the scientific basis and therapeutic mechanism of herbal formulas used to treat the disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call