Abstract
In this paper we consider networks of evolutionary processors with splicing rules and forbidding context (NEPFS) as language generating and computational devices. Such a network consists of several processors placed on the nodes of a virtual graph and are able to perform splicing (which is a biologically motivated operation) on the words present in that node, according to the splicing rules present there. Before applying the splicing operation on words, we check for the absence of certain symbols (forbidding context) in the strings on which the rule is applied. Each node is associated with an input and output filter. When the filters are based on random context conditions, one gets the computational power of Turing machines with networks of size two. We also show how these networks can be used to solve NP–complete problems in linear time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.