Abstract

A framework is proposed for the design and analysis of network-oblivious algorithms, namely algorithms that can run unchanged, yet efficiently, on a variety of machines characterized by different degrees of parallelism and communication capabilities. The framework prescribes that a network-oblivious algorithm be specified on a parallel model of computation where the only parameter is the problem’s input size, and then evaluated on a model with two parameters, capturing parallelism granularity and communication latency. It is shown that for a wide class of network-oblivious algorithms, optimality in the latter model implies optimality in the decomposable bulk synchronous parallel model, which is known to effectively describe a wide and significant class of parallel platforms. The proposed framework can be regarded as an attempt to port the notion of obliviousness, well established in the context of cache hierarchies, to the realm of parallel computation. Its effectiveness is illustrated by providing optimal network-oblivious algorithms for a number of key problems. Some limitations of the oblivious approach are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.