Abstract

The rapid diffusion of information and the adoption of social behaviors are of critical importance in situations as diverse as collective actions, pandemic prevention, or advertising and marketing. Although the dynamics of large cascades have been extensively studied in various contexts, few have systematically examined the impact of network topology on the efficiency of information diffusion. Here, by employing the linear threshold model on networks with communities, we demonstrate that a prominent network feature-the modular structure-strongly affects the speed of information diffusion in complex contagion. Our simulations show that there always exists an optimal network modularity for the most efficient spreading process. Beyond this critical value, either a stronger or a weaker modular structure actually hinders the diffusion speed. These results are confirmed by an analytical approximation. We further demonstrate that the optimal modularity varies with both the seed size and the target cascade size and is ultimately dependent on the network under investigation. We underscore the importance of our findings in applications from marketing to epidemiology, from neuroscience to engineering, where the understanding of the structural design of complex systems focuses on the efficiency of information propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.