Abstract
We consider network models of quantum localisation in which a particle with a two-component wave function propagates through the nodes and along the edges of an arbitrary directed graph, subject to a random SU(2) rotation on each edge it traverses. The propagation through each node is specified by an arbitrary but fixed S-matrix. Such networks model localisation problems in class C of the classification of Altland and Zirnbauer [1], and, on suitable graphs, they model the spin quantum Hall transition. We extend the analyses of Gruzberg, Ludwig and Read [5] and of Beamond, Cardy and Chalker [2] to show that, on an arbitrary graph, the mean density of states and the mean conductance may be calculated in terms of observables of a classical history-dependent random walk on the same graph. The transition weights for this process are explicitly related to the elements of the S-matrices. They are correctly normalised but, on graphs with nodes of degree greater than 4, not necessarily non-negative (and therefore interpretable as probabilities) unless a sufficient number of them happen to vanish. Our methods use a supersymmetric path integral formulation of the problem which is completely finite and rigorous.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.