Abstract

We consider localisation problems belonging to the chiral symmetry classes, in which sublattice symmetry is responsible for singular behaviour at a band centre. We formulate models which have the relevant symmetries and which are generalisations of the network model introduced previously in the context of the integer quantum Hall plateau transition. We show that the generalisations required can be re-expressed as corresponding to the introduction of absorption and amplification into either the original network model, or the variants of it that represent disordered superconductors. In addition, we demonstrate that by imposing appropriate constraints on disorder, a lattice version of the Dirac equation with a random vector potential can be obtained, as well as new types of critical behaviour. These models represent a convenient starting point for analytic discussions and computational studies, and we investigate in detail a two-dimensional example without time-reversal invariance. It exhibits both localised and critical phases, and band-centre singularities in the critical phase approach more closely in small systems the expected asymptotic form than in other known realisations of the symmetry class.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call