Abstract

Analyzing the collected evidence of a systematic review in form of a network meta-analysis (NMA) enjoys increasing popularity and provides a valuable instrument for decision making. Bayesian inference of NMA models is often propagated, especially if correlated random effects for multiarm trials are included. The standard choice for Bayesian inference is Markov chain Monte Carlo (MCMC) sampling, which is computationally intensive. An alternative to MCMC sampling is the recently suggested approximate Bayesian method of integrated nested Laplace approximations (INLA) that dramatically saves computation time without any substantial loss in accuracy. We show how INLA apply to NMA models for summary level as well as trial-arm level data. Specifically, we outline the modeling of multiarm trials and inference for functional contrasts with INLA. We demonstrate how INLA facilitate the assessment of network inconsistency with node-splitting. Three applications illustrate the use of INLA for a NMA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.