Abstract

To alleviate the blockage effects involved in millimeter-wave propagation, we investigate network massive multiple-input multiple-output (MIMO) transmission where only statistical channel state information is available at base stations (BSs). We first establish a network massive MIMO transmission model over millimeter-wave bands using per-beam synchronization. We Figure out that the beam domain is in favor of performing transmission in this scenario. We also demonstrate that BSs can work individually when sending signals to user terminals. Based on these insights, the network massive MIMO precoding design is reduced to a network sum-rate maximization problem with respect to beam domain power allocation. By exploiting the sequential optimization method and random matrix theory, an iterative algorithm with guaranteed convergence is further proposed to solve the problem. Numerical results reveal that the proposed network massive MIMO transmission approach can effectively alleviate the blockage effects and provide substantial performance gains over the existing transmission approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.