Abstract

We study the problem of cooperative localization of a large network of nodes in integer-coordinated unit disk graphs, a simplified but useful version of general random graph. Exploiting the property that the radius $r$ sets clear cut on the connectivity of two nodes, we propose an essential philosophy that ``no connectivity is a useful information'' in unit disk graphs. Exercising this philosophy, we show that the conventional network localization problem can be re-formulated to significantly reduce the search space, and that global rigidity, a necessary and sufficient condition for the existence of unique solution in general graphs, is no longer necessary. While the problem is still NP-hard, we show that a (depth-first) tree-search algorithm with memory $O(N)$ ($N$ is the network size) can be developed, and for practical setups, the search complexity and speed is very manageable, and is magnitudes less than the conventional problem, especially when the graph is sparse or when only very limited anchor nodes are available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.