Abstract

With the increase in usage of computer systems and computer networks, the problem of intrusion detection in network security has become an important issue. In this paper, we discuss approaches that simplify network administrator’s work. We applied clustering methods for security incident profiling. We considerK-means, PAM, and CLARA clustering algorithms. For this purpose, we used data collected in Warden system from various security tools. We do not aim to differentiate between normal and abnormal network traffic, but we focus on grouping similar threat agents based on attributes of security events. We suggest a case of a fine classification and a case of a coarse classification and discuss advantages of both cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.