Abstract
One of the key challenges of the machine learning (ML) based intrusion detection system (IDS) is the expensive computation time which is largely caused by the redundant, incomplete, and unrelated features contain in the IDS datasets. To overcome such challenges and ensure building efficient and more accurate IDS models, many researchers utilize preprocessing techniques such as normalization and feature selection, and a hybrid modeling approach is typically used. In this work, we propose a hybrid IDS modeling approach with an algorithm for feature selection (FS) and another for building the IDS. The FS method is a wrapper-based FS with a decision tree as the feature evaluator. Five selected ML algorithms are individually used in combination with the proposed FS method to build five IDS models using the UNSW-NB15 dataset. As a baseline, five more IDS models are built, in a single modeling approach, using the full features of the datasets. We evaluate the effectiveness of our proposed method by comparing it with the baseline models and also with state-of-the-art works. Our method achieves the best DR of 97.95% and proved to be quite effective in comparison to state-of-the-art works. We, therefore, recommend its usage especially in IDS modeling with the UNSW-NB15 dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.