Abstract

Person re-identification (ReID) is an important issue in computer vision area. It focuses on identifying people under different scenarios. In this paper, we test the contributions of local part features in ReID system. With the auxiliary of local part features, our model achieves significantly improvements, which achieves rank-1 accuracy of 91.7% on market1501 dataset and 82.6% on MARS dataset. We also test the feasibility of using densenet as backbone model in ReID system. With densenet as our backbone model, our method achieves state-of-art performance and simultaneously reduces the model size enormously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.