Abstract

Regulatory and developmental systems produce phenotypes that are robust to environmental and genetic variation. A gene product that normally contributes to this robustness is termed a phenotypic capacitor. When a phenotypic capacitor fails, for example when challenged by a harsh environment or mutation, the system becomes less robust and thus produces greater phenotypic variation. A functional phenotypic capacitor provides a mechanism by which hidden polymorphism can accumulate, whereas its failure provides a mechanism by which evolutionary change might be promoted. The primary example to date of a phenotypic capacitor is Hsp90, a molecular chaperone that targets a large set of signal transduction proteins. In both Drosophila and Arabidopsis, compromised Hsp90 function results in pleiotropic phenotypic effects dependent on the underlying genotype. For some traits, Hsp90 also appears to buffer stochastic variation, yet the relationship between environmental and genetic buffering remains an important unresolved question. We previously used simulations of knockout mutations in transcriptional networks to predict that many gene products would act as phenotypic capacitors. To test this prediction, we use high-throughput morphological phenotyping of individual yeast cells from single-gene deletion strains to identify gene products that buffer environmental variation in Saccharomyces cerevisiae. We find more than 300 gene products that, when absent, increase morphological variation. Overrepresented among these capacitors are gene products that control chromosome organization and DNA integrity, RNA elongation, protein modification, cell cycle, and response to stimuli such as stress. Capacitors have a high number of synthetic-lethal interactions but knockouts of these genes do not tend to cause severe decreases in growth rate. Each capacitor can be classified based on whether or not it is encoded by a gene with a paralog in the genome. Capacitors with a duplicate are highly connected in the protein–protein interaction network and show considerable divergence in expression from their paralogs. In contrast, capacitors encoded by singleton genes are part of highly interconnected protein clusters whose other members also tend to affect phenotypic variability or fitness. These results suggest that buffering and release of variation is a widespread phenomenon that is caused by incomplete functional redundancy at multiple levels in the genetic architecture.

Highlights

  • The relationship between genotype and phenotype is a central concern of many fields, from developmental biology to human genetics to evolutionary biology

  • Most species maintain abundant genetic variation and experience a wide range of environmental conditions, yet phenotypic differences between individuals are usually small. This phenomenon, known as phenotypic robustness, presents an apparent contradiction: if biological systems are so resistant to variation, how do they diverge and adapt through evolutionary time? Here, we address this question by investigating the molecular mechanisms that underlie phenotypic robustness and how these mechanisms can be broken to produce phenotypic heterogeneity

  • We identify genes that contribute to phenotypic robustness in yeast by analyzing the variance of morphological phenotypes in a comprehensive collection of single-gene knockout strains

Read more

Summary

Introduction

The relationship between genotype and phenotype is a central concern of many fields, from developmental biology to human genetics to evolutionary biology. In most cases this relationship is poorly understood, some general properties do seem to be shared across diverse systems. Chief among these is robustness to genetic and environmental variation [1]. Phenotypic robustness, termed canalization or buffering, is worthy of study in its own right [3]. It presents an apparent contradiction: if biological systems are so robust, how do they diverge and adapt through evolutionary time?

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call