Abstract

The problem of deploying countermeasures (CM) against antiship missiles is investigated from a network centric perspective in which multiple ships coordinate to defend against a known missile threat. Using the paradigm of network enabled operations (NEOPS), the problem is formulated as a transient stochastic game with communication where the appropriate strategy takes the form of an optimal stationary correlated equilibrium. Under this strategy, ships cooperate through real-time communication to satisfy both local and collective interests. The use of communication results in a performance improvement over the noncommunicating, Nash equilibrium scenario. This framework allows us to develop a theoretical foundation for NEOPS and captures the trade-off between information exchange and performance, while generalizing the standard Nash equilibrium solution for the missile deflection game given in [1], The NEOPS equilibrium strategy is characterized as the solution to an optimization problem with linear objective and bilinear constraints, which can be solved calculating successive improvements starting from an initial noncooperative (Nash) solution. The communication overhead required to implement this strategy is associated with the mutual information between individual action probability distributions at equilibrium. Numerical results illustrate the trade-off between communication and performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.