Abstract

Accumulation of beta-amyloid protein (Abeta) in the brain is a key feature of Alzheimer's disease (AD). The build-up of aggregated forms of Abeta leads to synaptic loss and to cognitive dysfunction. Although the pathways controlling production and aggregation of Abeta are well studied, the mechanisms that drive the spread of neurodegeneration in the brain are unclear. Here, the idea is presented that AD progresses as a consequence of synaptic scaling, a type of neuronal plasticity that helps maintain synaptic signal strength. Recent studies indicate that brain-derived neurotrophic factor, tumour necrosis factor-alpha and alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) regulate synaptic scaling in the AD brain. It is suggested that further studies on synaptic scaling in AD could reveal new targets for therapeutic drug development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.