Abstract
Abstract. We propose a new approach for the automatic detection of network structures in raster data. The model for the network structure is represented by a graph whose nodes and edges correspond to junction-points and to connecting line segments, respectively; nodes and edges are further described by certain parameters. We embed this model in the probabilistic framework of marked point processes and determine the most probable configuration of objects by stochastic sampling. That is, different graph configurations are constructed randomly by modifying the graph entity parameters, by adding and removing nodes and edges to/ from the current graph configuration. Each configuration is then evaluated based on the probabilities of the changes and an energy function describing the conformity with a predefined model. By using the Reversible Jump Markov Chain Monte Carlo sampler, a global optimum of the energy function is determined. We apply our method to the detection of river and tidal channel networks in digital terrain models. In comparison to our previous work, we introduce constraints concerning the flow direction of water into the energy function. Our goal is to analyse the influence of different parameter settings on the results of network detection in both, synthetic and real data. Our results show the general potential of our method for the detection of river networks in different types of terrain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.