Abstract

A self-clocked fair queueing (SCFQ) scheme has been proposed by Golestani (see Proc. IEEE INFOCOM, p. 636-636, 1994) as an easily implementable version of fair queueing. In this paper, the worst case network delay performance of a class of fair queueing algorithms, including the SCFQ scheme, is studied. We build upon and generalize the methodology developed by Parekh and Gallager (see ACM/IEEE Trans. Networking, vol.1, no.3, p.344-357, 1993, and vol.2, no.2, p.137-150, 1994) to study this class of algorithms based on the leaky-bucket characterization of traffic. Under modest resource allocation conditions, the end-to-end session delays and backlogs corresponding to this class of algorithms are shown to be bounded. For the SCFQ scheme, these bounds are larger, but practically as good as the corresponding bounds for the PGPS scheme. It is shown that the SCFQ scheme can provide adequate performance guarantees for the delay-sensitive traffic in ATM.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.