Abstract
Degree peeling is used to study complex networks. It is a decomposition of the network into vertex groups of increasing minimum degree. However, the peeling value of a vertex is non-local in this context since it relies on the number of connections the vertex has to groups above it. We explore a different way to decompose a network into edge layers such that the local peeling value of the vertices on each layer does not depend on their non-local connections with the other layers. This corresponds to the decomposition of a graph into subgraphs that are invariant with respect to degree peeling, i.e., they are fixed points. We introduce a general method to partition the edges of an arbitrary graph into fixed points of degree peeling called the iterative edge core decomposition. Information from this decomposition is used to formulate a novel notion of vertex diversity based on Shannon’s entropy. We illustrate the usefulness of this decomposition on a variety of social networks including weighted graphs. Our method can be used as a preprocessing step for community detection and graph visualization.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.