Abstract

This article proposes a new two-stage hybrid stochastic-information gap-decision theory (IGDT) based on the network-constrained unit commitment framework. The model is applied for the market clearing of joint energy and flexible ramping reserve in integrated heat- and power-based energy systems. The uncertainties of load demands and wind power generation are studied using the Monte Carlo simulation method and IGDT, respectively. The proposed model considers both risk-averse and risk-seeker strategies, which enables the independent system operator to provide flexible decisions in meeting system uncertainties in real-time dispatch. Moreover, the effect of feasible operating regions of the combined heat and power (CHP) plants on energy and flexible ramping reserve market and operation cost of the system is investigated. The proposed model is implemented on a test system to verify the effectiveness of the introduced two-stage hybrid framework. The analysis of the obtained results demonstrates that the variation of heat demand is effective on power and flexible ramping reserve supplied by CHP units.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.