Abstract

Biological systems are complex dynamical systems whose relationships with environment have strong implications on their regulation and survival. From the interactions between plant and environment can emerge a quite complex network of plant responses rarely observed through classical analytical approaches. The objective of this current study was to test the hypothesis that photosynthetic responses of different tree species to increasing irradiance are related to changes in network connectances of gas exchange and photochemical apparatus, and alterations in plant autonomy in relation to the environment. The heat dissipative capacity through daily changes in leaf temperature was also evaluated. It indicated that the early successional species (Citharexylum myrianthum Cham. and Rhamnidium elaeocarpum Reiss.) were more efficient as dissipative structures than the late successional one (Cariniana legalis (Mart.) Kuntze), suggesting that the parameter DT (T oCair - T oCleaf) could be a simple tool in order to help the classification of successional classes of tropical trees. Our results indicated a pattern of network responses and autonomy changes under high irradiance. Considering the maintenance of daily CO2 assimilation, the tolerant species (C. myrianthum and R. elaeocarpum) to high irradiance trended to maintain stable the level of gas exchange network connectance and to increase the autonomy in relation to the environment. On the other hand, the late successional species (C. legalis) trended to lose autonomy, decreasing the network connectance of gas exchange. All species showed lower autonomy and higher network connectance of the photochemical apparatus under high irradiance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.