Abstract
Endpoint congestion is a bottleneck in high-performance computing (HPC) networks and severely impacts system performance, especially for latency-sensitive applications. For long messages (or flows) whose duration is far larger than the round-trip time (RTT), endpoint congestion can be effectively mitigated by proactive or reactive counter-measures such that the injection rate of each source is dynamically controlled to a proper level. However, many HPC applications produce a hybrid traffic, a mix of short and long messages, and are dominated by short messages. Existing proactive congestion avoidance methods face the great challenge of scheduling the rapidly changing traffic pattern caused by these short messages. In this paper, we leverage the advantages of proactive and reactive congestion avoidance techniques and propose the Packet-chaining Reservation Protocol (PCRP) to make a dynamic balance between flows following proactive scheduling and packets subjected to reactive network conditions. We select the chaining packets as a flexible reservation granularity between the whole flow and one packet. We allow small flows to be speculatively transmitted without being discarded and give them higher priority over the entire network. Our PCRP can respond quickly to network conditions and effectively avoid the formation of endpoint congestion and reduce the average flow delay. We conduct extensive experiments to evaluate our PCRP and compare it with the state-of-the-art proactive reservation-based protocols, Speculative Reservation Protocol (SRP) and Bilateral Flow Reservation Protocol (BFRP). The simulation results demonstrate that in our design the flow latency can be reduced by 50.2% for hotspot traffic and 28.38% for uniform traffic.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.