Abstract

Summary In many real-world networks, it is often observed that subgraphs or higher-order structures of certain configurations, e.g., triangles and by-fans, are overly abundant compared to standard randomly generated networks (Milo et al., 2002). However, statistical models accounting for this phenomenon are limited, especially when community structure is of interest. This limitation is coupled with a lack of community detection methods that leverage subgraphs or higher-order structures. In this paper, we propose a new community detection method that effectively uses higher-order structures in a network. Furthermore, for the community detection accuracy, under an edge-dependent network model that consists of both community and triangle structures, we develop a finite-sample error bound characterized by the expected triangle degree, which leads to the consistency of the proposed method. To the best of our knowledge, this is the first statistical error bound and consistency result for community detection of a single network considering a network model with dependent edges. We also show, in both simulation studies and a real-world data example, that our method unveils network communities that are otherwise invisible to methods that ignore higher-order structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.