Abstract
In this paper, we study the problem of distributing a real-time video sequence to a group of partially connected cooperative wireless devices using instantly decodable network coding (IDNC). In such a scenario, the coding conflicts occur to service multiple devices with an immediately decodable packet, and the transmission conflicts occur from simultaneous transmissions of multiple devices. To avoid these conflicts, we introduce a novel IDNC graph that represents all feasible coding and transmission conflict-free decisions in one unified framework. Moreover, a real-time video sequence has a hard deadline and unequal importance of video packets. Using these video characteristics and the new IDNC graph, we formulate the problem of minimizing the mean video distortion before the deadline as a finite horizon Markov decision process (MDP) problem. However, the backward induction algorithm that finds the optimal policy of the MDP formulation has high modeling and computational complexities. To reduce these complexities, we further design a two-stage maximal independent set selection algorithm, which can efficiently reduce the mean video distortion before the deadline. Simulation results over a real video sequence show that our proposed IDNC algorithms improve the received video quality compared with the existing IDNC algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.