Abstract

Today's spacecraft avionics architecture is characterised by a broad variety of processing modules, operating systems and interfaces for exchanging data between different processing modules. The software that implements most of the satellite functionality has to deal with this fact and is one of the reasons why software has become one of the major cost drivers in satellite projects. Similar problems have triggered developments in other industrial domains like AUTOSAR in the automotive area or Integrated Modular Architecture (IMA) in the aerospace industry [8]. All these initiatives are based on the definition of standards for computing platforms and the interfaces between these platforms. The goals of the Open Modular Avionics Architecture for Space Applications (OMAC4S) initiative started by Astrium, Fraunhofer FOKUS, STI, SYSGO and TTTech are to outline a solution that helps to reduce complexity and costs for space avionics significantly. This initiative is partly funded by the German national space agency (DLR) through the project On-Board Computer System Architecture (OBC-SA). In this paper we describe how standardization and the usage of already proven technologies from other industrial domains will help to limit the effect of the software development on schedule and costs of satellite projects. In addition we will demonstrate a migration path to make these technologies available for space applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call