Abstract

Network calculus is a theory dealing with queueing type problems encountered in computer networks, with particular focus on quality of service guarantee analysis. Queueing theory is the mathematical study of queues, proven to be applicable to a wide area of problems, generally concerning about the (average) quantities in an equilibrium state. Since both network calculus and queueing theory are analytical tools for studying queues, a question arises naturally as is if and where network calculus and queueing theory meet. In this paper, we explore queueing principles that underlie network calculus and exemplify their use. Particularly, based on the network calculus queueing principles, we show that for GI/GI/1, similar inequalities in the theory of queues can be derived. In addition, we prove that the end-to-end performance of a tandem network is independent of the order of servers in the network even under some general settings. Through these, we present a network calculus perspective on queues and relate network calculus to queueing theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.