Abstract

BackgroundOnline repetitive transcranialmagnetic stimulation (rTMS) has been shown to modulate working memory (WM) performance in a site‐specific manner, with behavioral improvements due to stimulation of the dorsolateral prefrontal cortex (DLPFC), and impairment from stimulation to the lateral parietal cortex (LPC). Neurobehavioral studies have demonstrated that subprocesses of WM allowing for the maintenance and manipulation of information in the mind involve unique cortical networks. Despite promising evidence of modulatory effects of rTMS on WM, no studies have yet demonstrated distinct modulatory control of these two subprocesses. The current study therefore sought to explore this possibility through site‐specific stimulation during an online task invoking both skills.MethodsTwenty‐nine subjects completed a 4‐day protocol, in which active or sham 5Hz rTMS was applied over the DLPFC and LPC in separate blocks of trials while participants performed tasks that required either maintenance alone, or both maintenance and manipulation (alphabetization) of information. Stimulation targets were defined individually based on fMRI activation and structural network properties. Stimulation amplitude was adjusted using electric field modeling to equate induced current in the target region across participants.ResultsDespite the use of advanced techniques, no significant differences or interactions between active and sham stimulation were found. Exploratory analyses testing stimulation amplitude, fMRI activation, and modal controllability showed nonsignificant but interesting trends with rTMS effects.ConclusionWhile this study did not reveal any significant behavioral changes in WM, the results may point to parameters that contribute to positive effects, such as stimulation amplitude and functional activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.