Abstract

This paper presents a network-based analysis approach for the reconfiguration problem of a self-reconfigurable robot. The self-reconfigurable modular robot named “AMOEBA-I” has nine kinds of non-isomorphic configurations that consist of a configuration network. Each configuration of the robot is defined to be a node in the weighted and directed configuration network. The transformation from one configuration to another is represented by a directed path with nonnegative weight. Graph theory is applied in the reconfiguration analysis, where reconfiguration route, reconfigurable matrix and route matrix are defined according to the topological information of these configurations. Algorithms in graph theory have been used in enumerating the available reconfiguration routes and deciding the best reconfiguration route. Numerical analysis and experimental simulation results prove the validity of the approach proposed in this paper. And it is potentially suitable for other self-reconfigurable robots’ configuration control and reconfiguration planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.