Abstract

BackgroundInfections are often associated to comorbidity that increases the risk of medical conditions which can lead to further morbidity and mortality. SARS is a threat which is similar to MERS virus, but the comorbidity is the key aspect to underline their different impacts. One UK doctor says "I’d rather have HIV than diabetes" as life expectancy among diabetes patients is lower than that of HIV. However, HIV has a comorbidity impact on the diabetes.ResultsWe present a quantitative framework to compare and explore comorbidity between diseases. By using neighbourhood based benchmark and topological methods, we have built comorbidity relationships network based on the OMIM and our identified significant genes. Then based on the gene expression, PPI and signalling pathways data, we investigate the comorbidity association of these 2 infective pathologies with other 7 diseases (heart failure, kidney disorder, breast cancer, neurodegenerative disorders, bone diseases, Type 1 and Type 2 diabetes). Phenotypic association is measured by calculating both the Relative Risk as the quantified measures of comorbidity tendency of two disease pairs and the ϕ-correlation to measure the robustness of the comorbidity associations. The differential gene expression profiling strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response and statistically dysregulates a large number of genes, pathways and PPIs subnetworks in different pathologies such as chronic heart failure (21 genes), breast cancer (16 genes) and bone diseases (11 genes). HIV-1 induces comorbidities relationship with many other diseases, particularly strong correlation with the neurological, cancer, metabolic and immunological diseases. Similar comorbidities risk is observed from the clinical information. Moreover, SARS and HIV infections dysregulate 4 genes (ANXA3, GNS, HIST1H1C, RASA3) and 3 genes (HBA1, TFRC, GHITM) respectively that affect the ageing process. It is notable that HIV and SARS similarly dysregulated 11 genes and 3 pathways. Only 4 significantly dysregulated genes are common between SARS-CoV and MERS-CoV, including NFKBIA that is a key regulator of immune responsiveness implicated in susceptibility to infectious and inflammatory diseases.ConclusionsOur method presents a ripe opportunity to use data-driven approaches for advancing our current knowledge on disease mechanism and predicting disease comorbidities in a quantitative way.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2105-15-333) contains supplementary material, which is available to authorized users.

Highlights

  • Infections are often associated to comorbidity that increases the risk of medical conditions which can lead to further morbidity and mortality

  • We found that 274 genes (p < 0.01, > 1.5 fold change) were differentially expressed as compared to healthy controls in which 120 genes were significantly up regulated and 154 genes were significantly down regulated

  • Monocytes are the key immune responsive cells whose function is adversely impacted by human immunodeficiency virus-1 (HIV)-1

Read more

Summary

Introduction

Infections are often associated to comorbidity that increases the risk of medical conditions which can lead to further morbidity and mortality. A pair of diseases is connected because they have both been associated with the same dysregulated genes [14,15], whereas from a proteomics perspective phenotypically similar diseases are related via biological modules such as PPIs or molecular pathways [16,17]. Wajngurt, Park and Zheng et al inferred the comorbidity links between 161 disorders from the disease history of 1.5 million patients [12]. All of these efforts have focused on the role of a single molecular or phenotypic measure to capture disease–disease relationships. In our work we have used disease–gene associations, PPIs, molecular pathways and clinical information to obtain statistically significant associations and comorbidity risks among diseases

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.