Abstract
Device-to-device (D2D) communication underlaid cellular network is considered a key integration feature in future cellular network. However, without properly designed interference management, the interference from D2D transmission tends to degrade the performance of cellular users and D2D pairs. In this work, we proposed a network-assisted distributed interference mitigation scheme to address this issue. Specifically, the base station (BS) acts as a control agent that coordinates the cross-tier interference from D2D transmission through a taxation scheme. The cotier interference is controlled by noncooperative game amongst D2D pairs. In general, the outcome of noncooperative game is inefficient due to the selfishness of each player. In our game formulation, reference user who is the victim of cotier interference is factored into the payoff function of each player to obtain fair and efficient outcome. The existence, uniqueness of the Nash Equilibrium (NE), and the convergence of the proposed algorithm are characterized using Variational Inequality theory. Finally, we provide simulation results to evaluate the efficiency of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.