Abstract

This study applies network analysis to analyze the structure of the Euro Stoxx market during the long period from 2002 up to 2014. The paper generalizes previous research on stock market networks by including asset returns and volume trading as the main variables to study the financial market. A multidimensional generalization of the minimal spanning tree (MST) concept is introduced, by adding the role of trading volume to the traditional approach which only includes price returns. Additionally, we use symbolization methods to the raw data to study the behavior of the market structure in different, normal and critical, situations. The hierarchical organization of the network is derived, and the MST for different sub-periods of 2002–2014 is created to illustrate how the structure of the market evolves over time. From the structural topologies of these trees, different clusters of companies are identified and analyzed according to their geographical and economic links. Two important results are achieved. Firstly, as other studies have highlighted, at the time of the financial crisis after 2008 the network becomes a more centralized one. Secondly and most important, during our second period of analysis, 2008–2014, we observe that hierarchy becomes more country-specific where different sub-clusters of stocks belonging to France, Germany, Spain or Italy are found apart from their business sector group. This result may suggest that during this period of time financial investors seem to be worried most about country specific economic circumstances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.