Abstract

BackgroundOne of the best ways to control the transmission of malaria is by breaking the vector-human link, either by reducing the effective population size of mosquitoes or avoiding infective bites. Reducing house entry rates in endophagic vectors by obstructing openings is one simple way of achieving this. Mosquito netting has previously been shown to have this effect. More recently different materials that could also be used have come onto the market. Therefore, a pilot study was conducted to investigate the protective effect of three types of material against Anopheles funestus and Anopheles gambiae s.l entry into village houses in Mozambique when applied over the large opening at the gables and both gables and eaves.MethodsA two-step intervention was implemented in which the gable ends of houses (the largest opening) were covered with one of three materials (four year old mosquito bed nets; locally purchased untreated shade cloth or deltamethrin-impregnated shade cloth) followed by covering both gable ends and eaves with material. Four experimental rounds (each of three weeks duration), from four houses randomly assigned to be a control or to receive one of the three intervention materials, were undertaken from March to August 2010 in the village of Furvela in southern Mozambique. Mosquito entry rates were assessed by light-trap collection and the efficacy of the different materials was determined in terms of incidence rate ratio (IRR), obtained through a Generalized Estimating Equations (GEE), of mosquito entry in a treated house compared to the untreated (control) house.ResultsAltogether 9,692 An. funestus and 1,670 An. gambiae s.l. were collected. Houses treated with mosquito netting or the untreated shade cloth had 61.3% [IRR = 0.39 (0.32-0.46); P <0.0001] and 70% [IRR = 0.30 (0.25 – 0.37); P <0.001] fewer An. funestus in relation to untreated houses, but there was no difference in An. funestus in houses treated with the deltamethrin-impregnated shade cloth [IRR = 0.92 (0.76 –1.12); P = 0.4] compared to untreated houses. Houses treated with mosquito netting reduced entry rates of An. gambiae s.l, by 84% [IRR = 0.16 (0.10 – 0.25); P <0.001], whilst untreated shade cloth reduced entry rates by 69% [IRR = 0.31 (0.19 –0.53); P <0.001] and entry rates were reduced by 76% [IRR = 0.24 (0.15 0.38); P <0.001] in houses fitted with deltamethrin-impregnated shade cloth.

Highlights

  • One of the best ways to control the transmission of malaria is by breaking the vector-human link, either by reducing the effective population size of mosquitoes or avoiding infective bites

  • Mosquitoes were again collected for a further six days, giving a total of Airflow data Zero Vector cloth had least effect on airflow. This was followed by the mosquito netting, the mean reduction in flow being 16% and 26% of the control respectively

  • The results clearly indicate that application of the used mosquito nets or the Maxixe shade cloth significantly reduced the total number of An. funestus entering houses and that all of the materials used in the study reduced the numbers of An. gambiae entering

Read more

Summary

Introduction

One of the best ways to control the transmission of malaria is by breaking the vector-human link, either by reducing the effective population size of mosquitoes or avoiding infective bites. Reducing house entry rates in endophagic vectors by obstructing openings is one simple way of achieving this. Reducing mosquito entry rates into houses is a simple way of reducing transmission [3,4] and. Mosquitoes, attracted to odour and carbon dioxide, tend to enter such houses via the gap between the roof and the walls [12,13]. This gap, in addition to allowing access to mosquitoes, provides illumination and ventilation and closing the opening with a solid barrier, as recommended by Kirby et al [11], may not be acceptable in many cases. Airflow may be increased through other openings if the larger openings are closed enabling mosquitoes to more find these secondary entry points

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call