Abstract

Guided migrations of cells and developing axons along the dorso-ventral (D/V) and antero-posterior (A/P) body axes govern tissue patterning and neuronal connections. In C. elegans, as in vertebrates, D/V and A/P graded distributions of UNC-6/Netrin and Wnts, respectively, provide instructive polarity information to guide cells and axons migrating along these axes. By means of a comprehensive genetic analysis, we found that simultaneous loss of Wnt and Netrin signaling components reveals previously unknown and unexpected redundant roles for Wnt and Netrin signaling pathways in both D/V and A/P guidance of migrating cells and axons in C. elegans, as well as in processes essential for organ function and viability. Thus, in addition to providing polarity information for migration along the axis of their gradation, Wnts and Netrin are each able to guide migrations orthogonal to the axis of their gradation. Netrin signaling not only functions redundantly with some Wnts, but also counterbalances the effects of others to guide A/P migrations, while the involvement of Wnt signaling in D/V guidance identifies Wnt signaling as one of the long sought mechanisms that functions in parallel to Netrin signaling to promote D/V guidance of cells and axons. These findings provide new avenues for deciphering how A/P and D/V guidance signals are integrated within the cell to establish polarity in multiple biological processes, and implicate broader roles for Netrin and Wnt signaling - roles that are currently masked due to prevalent redundancy.

Highlights

  • Migrating cells and axons respond to a multitude of extracellular cues encountered along their migratory paths

  • In C. elegans a polaritydetermining gradient of UNC-6/Netrin secreted by ventral sources of this guidance cue mediates apparent attraction of some migrating cells and growth cones toward the ventral side by signaling through the transmembrane receptor UNC-40/DCC, and mediates apparent repulsion of other cells and growth cones away from the ventral side by signaling through the transmembrane receptor UNC-5 alone or together with UNC-40/DCC [1,5,6,7]

  • The UNC-6/Netrin guidance cue has a conserved role in guiding cell and growth cone migrations along the dorso-ventral axis, whereas Wnts are critical for determining polarity and guidance along the antero-posterior axis

Read more

Summary

Introduction

Migrating cells and axons respond to a multitude of extracellular cues encountered along their migratory paths. In C. elegans a polaritydetermining gradient of UNC-6/Netrin secreted by ventral sources of this guidance cue mediates apparent attraction of some migrating cells and growth cones toward the ventral side by signaling through the transmembrane receptor UNC-40/DCC, and mediates apparent repulsion of other cells and growth cones away from the ventral side by signaling through the transmembrane receptor UNC-5 alone or together with UNC-40/DCC [1,5,6,7] This highly conserved instructive guidance system is critical for nervous system patterning in both vertebrates and invertebrates [2,3,5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call