Abstract
Netrin-1 expression in articular cartilage is correlated with osteoarthritic changes. We aimed to investigate the contribution of Netrin-1 secreted by human osteoarthritic articular chondrocytes to angiogenesis process in vitro. Human articular chondrocytes were extracted from non-osteoarthritic (n = 10) and osteoarthritic (n = 22) joints obtained from surgical specimens and incubated for 24 hours. Medium conditioned by non-osteoarthritic and osteoarthritic articular chondrocytes were collected. Human umbilical vein endothelial cells (HUVEC) were treated with control and conditioned medium and assessed using assays for cell adherence, migration, and tube formation. Netrin-1 expression and secretion was compared between non-osteoarthritic and osteoarthritic chondrocytes by qPCR, Western blot, and ELISA. The role of chondrocyte-secreted Netrin-1 on HUVEC functions was assessed by immunological neutralization using an anti-Netrin-1 monoclonal antibody. As compared with medium conditioned by non-osteoarthritic chondrocytes, medium conditioned by osteoarthritic chondrocytes permitted tube formation by HUVEC. Both non-osteoarthritic and osteoarthritic chondrocytes expressed Netrin-1 at the RNA and protein levels. At the RNA level, Netrin-1 expression did not differ between non-osteoarthritic and osteoarthritic chondrocytes. At the protein level, Netrin-1 appeared as a full protein of 64 kDa in non-osteoarthritic chondrocytes and as two cleaved proteins of 55 kDa and 64 kDa in osteoarthritic chondrocytes. Immunological neutralization of endogenous Netrin-1 reduced the pro-angiogenic and pro-inflammatory transcriptional profile of HUVEC treated with the medium conditioned by osteoarthritic chondrocytes, as well as their capacities to form tubes. Medium conditioned by osteoarthritic chondrocytes permits tube formation by HUVEC in vitro. This permissive effect is mediated by Netrin-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.