Abstract

Interactions between primordium cells and their environment determines the self-organization of the zebrafish posterior Lateral Line primordium as it migrates under the skin from the ear to the tip of the tail forming and depositing neuromasts to spearhead formation of the posterior Lateral Line sensory system. In this review we describe how the NetLogo agent-based programming environment has been used in our lab to visualize and explore how self-generated chemokine gradients determine collective migration, how the dynamics of Wnt signaling can be used to predict patterns of neuromast deposition, and how previously defined interactions between Wnt and Fgf signaling systems have the potential to determine the periodic formation of center-biased Fgf signaling centers in the wake of a shrinking Wnt system. We also describe how NetLogo was used as a database for storing and visualizing the results of in toto lineage analysis of all cells in the migrating primordium. Together, the models illustrate how this programming environment can be used in diverse ways to integrate what has been learnt from biological experiments about the nature of interactions between cells and their environment, and explore how these interactions could potentially determine emergent patterns of cell fate specification, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call