Abstract

BackgroundTemporal analysis of gene expression data has been limited to identifying genes whose expression varies with time and/or correlation between genes that have similar temporal profiles. Often, the methods do not consider the underlying network constraints that connect the genes. It is becoming increasingly evident that interactions change substantially with time. Thus far, there is no systematic method to relate the temporal changes in gene expression to the dynamics of interactions between them. Information on interaction dynamics would open up possibilities for discovering new mechanisms of regulation by providing valuable insight into identifying time-sensitive interactions as well as permit studies on the effect of a genetic perturbation.ResultsWe present NETGEM, a tractable model rooted in Markov dynamics, for analyzing the dynamics of the interactions between proteins based on the dynamics of the expression changes of the genes that encode them. The model treats the interaction strengths as random variables which are modulated by suitable priors. This approach is necessitated by the extremely small sample size of the datasets, relative to the number of interactions. The model is amenable to a linear time algorithm for efficient inference. Using temporal gene expression data, NETGEM was successful in identifying (i) temporal interactions and determining their strength, (ii) functional categories of the actively interacting partners and (iii) dynamics of interactions in perturbed networks.ConclusionsNETGEM represents an optimal trade-off between model complexity and data requirement. It was able to deduce actively interacting genes and functional categories from temporal gene expression data. It permits inference by incorporating the information available in perturbed networks. Given that the inputs to NETGEM are only the network and the temporal variation of the nodes, this algorithm promises to have widespread applications, beyond biological systems.The source code for NETGEM is available from https://github.com/vjethava/NETGEM

Highlights

  • Temporal analysis of gene expression data has been limited to identifying genes whose expression varies with time and/or correlation between genes that have similar temporal profiles

  • In order to reveal the dynamics of the networks, substantial effort has been devoted to measuring the dynamics of gene expression or protein abundance

  • We introduce NETGEM, which stands for “Network Embedded Temporal GEnerative Model for gene expression data”, a generative model for analyzing temporal data which is capable of capturing the interaction dynamics in the network

Read more

Summary

Introduction

Temporal analysis of gene expression data has been limited to identifying genes whose expression varies with time and/or correlation between genes that have similar temporal profiles. It is becoming increasingly evident that interactions change substantially with time. There is no systematic method to relate the temporal changes in gene expression to the dynamics of interactions between them. Information on interaction dynamics would open up possibilities for discovering new mechanisms of regulation by providing valuable insight into identifying time-sensitive interactions as well as permit studies on the effect of a genetic perturbation. In order to reveal the dynamics of the networks, substantial effort has been devoted to measuring the dynamics of gene expression or protein abundance. This information permitted identifying genes or proteins that substantially

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.