Abstract

Net-Zero Energy Districts (NZEDs) are city districts in which the annual amount of CO2 emissions released is balanced by emissions removed from the atmosphere. NZEDs constitute a major component in a new generation of “smart-green cities”, which deploy both smart city technologies and renewable energy technologies. NZEDs promote environmental sustainability, contribute to cleaner environments and reduce global warming and the threats from climate change. This paper describes a model to assess the feasibility of the transition of city districts to self-sufficient NZEDs, based on locally produced renewable energy suitable for cities. It also aims to identify threshold conditions that allow for a city district to become a self-sufficient NZED using smart city systems, renewable energy, and nature-based solutions. The significance of transition to self-sufficient NZEDs is extremely important as it considerably decentralises and multiplies the efforts for carbon-neutral cities. The methodology we follow combines the literature review, model design, model feed with data, and many simulations to assess the outcome of the model in various climate, social, technology, and district settings. In the conclusion, we assess whether the transition to NZEDs with solar panel energy locally produced is feasible, we identify thresholds in terms of climate, population density, and solar conversion efficiency, and assess the compatibility of NZEDs with compact city planning principles.

Highlights

  • Net-Zero Energy Districts (NZEDs) constitute a major component of a new generation of smart-green cities leading to carbon-neutral cities

  • The three hypotheses we propose concern the feasibility of NZEDs depending on locally produced renewable energy without energy import from external sources; the thresholds in terms of population, climate conditions, energy consumption, and technology that define the feasibility of an NZED; and the spatial form and structure of such selfsufficient NZEDs

  • There is a wide literature in the field, and we focus on publications with an operational perspective that allow for setting the transition model to NZEDs

Read more

Summary

Introduction

Net-Zero Energy Districts (NZEDs) constitute a major component of a new generation of smart-green cities leading to carbon-neutral cities. They deploy smart city systems for energy optimisation, renewable energy (RE), and nature-based solutions, to zero carbon dioxide emissions. This paper describes a model to assess the feasibility of the transition of city districts into self-sufficient NZEDs, based on locally produced renewable energy suitable for cities. Such districts do not need renewable energy imports and produce energy via a distributed local system that works as a virtual energy plant. The model identifies social, climate, and technological thresholds that allow for a city district to become self-sufficient NZEDs using smart city systems and covering all energy needs from locally produced renewable energy

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.