Abstract
Net uptake of potassium by low K, high Na cells of Neurospora at pH 5.8 is accompanied by net extrusion of sodium and hydrogen ions. The amount of potassium taken up by the cells is matched by the sum of sodium and hydrogen ions lost, under a variety of conditions: prolonged preincubation, partial respiratory inhibition (DNP), and lowered [K](o). All three fluxes are exponential with time and obey Michaelis kinetics as functions of [K](o). The V(max) for net potassium uptake, 22.7 mmoles/kg cell water/min, is very close to that for K/K exchange reported previously (20 mmoles/kg cell water/min). However, the apparent K(m) for net potassium uptake, 11.8 mM [K](o), is an order of magnitude larger than the value (1 mM) for K/K exchange. It is suggested that a single transport system handles both net K uptake and K/K exchange, but that the affinity of the external site for potassium is influenced by the species of ion being extruded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.