Abstract
In the electricity grid, constantly balancing the supply and demand is critical for the network’s stability and any expected deviations require balancing efforts. This balancing becomes more challenging in future energy systems characterised by a high proportion of renewable generation due to the increased volatility of these renewables. In order to know when any balancing efforts are required, it is essential to predict the so-called net load, the difference between forecast energy demand and renewable supply. Although various forecasting approaches exist for both the individual components of the net load and the net load itself, it is unclear if it is more beneficial to aggregate several specialised forecasts to obtain the net load or to aggregate the input data to forecast the net load with one approach directly. Therefore, the present paper compares three net load forecasting approaches that exploit different levels of aggregation. We compare an aggregated strategy that directly forecasts the net load, a partially aggregated strategy that forecasts demand and supply separately, and a disaggregated strategy that forecasts demand and supply from each generator separately. We evaluate the forecast performance of all strategies with a simple and a complex forecasting model, both for deterministic and probabilistic forecasts, using one year of data from a simulated realistic future energy system characterised by a high share of renewable energy sources. We find that the partially aggregated strategy performs best, suggesting that a balance between specifically tailored forecasting models and aggregation is advantageous.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.