Abstract

Hydrographic data—obtained concurrently along the 25 km longitudinal axis of the Kennebec River estuary during a 13 h semidiurnal tidal cycle of a spring freshet superimposed on near-perigean spring tides—revealed a strong ebb-current dominance along the length of the estuary. Ebb- current dominance is produced by riverine flow that supplants a substantial part of the flood-tidal prism. In addition, side-scan sonograms showed a suite of large bed forms (1–12 m height) with nearly ubiquitous ebb orientations veneering the estuary bottom. Embayment geometry, salinity, water temperature, discharge, current velocity, and bed-form data all suggest that ebb- velocity asymmetry, set up by seasonal changes in freshwater discharge superimposed on ebb-directed tides, is the most important control on net bed-load sediment transport within this high-latitude, rock- bound estuary. These data augment a model that shows that a freshwater discharge threshold exists for net seaward bed-load sediment transport. The results from this study can be used to refine existing conceptual sedimentologic and morphologic classifications of estuaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call