Abstract

We provide a general framework for getting linear time constant factor approximations (and in many cases FPTAS's) to a copious amount of well known and well studied problems in Computational Geometry, such as k-center clustering and furthest nearest neighbor. The new approach is robust to variations in the input problem, and yet it is simple, elegant and practical. In particular, many of these well studied problems which fit easily into our framework, either previously had no linear time approximation algorithm, or required rather involved algorithms and analysis. A short list of the problems we consider include furthest nearest neighbor, k-center clustering, smallest disk enclosing k points, k-th largest distance, k-th smallest m-nearest neighbor distance, k-th heaviest edge in the MST and other spanning forest type problems, problems involving upward closed set systems, and more. Finally, we show how to extend our framework such that the linear running time bound holds with high probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.