Abstract

A new approach, combining 15NH4+ isotope dilution and continuous-flow techniques, provided estimates of “actual” and “net” NH4+ flux and sediment NH4+ demand (SAD) at the sediment–water interface (SWI) of sites in the northern Gulf of Mexico (NGOMEX). The sites included a hypoxic site (C6), two sites with intermediate oxygen levels (B7 and F5), and a normoxic site (CT). Control cores without isotope addition and other cores from the same site treated with 15NH4+ labeled overflowing water differentiated between net and actual regeneration flux and actual vs. potential uptake flux of NH4+. Experiments were conducted in 2008 before (July) and after (September) two successive hurricanes (Gustav and Ike) and in January and August, 2009. Actual regeneration was significantly higher than net flux at most sites. Net flux did not differ significantly in most sites/dates, but the actual regeneration, and the actual and potential uptake, showed temporal and spatial variation; the flux at the hypoxic site was more active than non-hypoxic sites. SAD, the difference between potential and actual NH4+ uptake flux, was higher at the hypoxic site than at non-hypoxic sites before and after the hurricanes in 2008 and during the hypoxia season in 2009. SAD related negatively to bottom water DO values. Conclusions: (1) net flux often underestimated actual regeneration, (2) hurricane activity decreased N dynamics, and (3) microbial N limitation status at the hypoxic site related to NH4+ removal processes that were independent of oxygen (e.g., anaerobic heterotrophic uptake or anammox). These results indicate a rather consistent NH4+ demand at the SWI during the hypoxic season and suggest that reduced nitrogen may limit microbial dynamics in the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call