Abstract
It is proved that a nest $\mathcal N$ on a separable complex Hilbert space $\mathcal H$ has the left (resp. right) partial factorization property, which means that for every invertible operator $T$ from $\mathcal H$ onto a Hilbert space $\mathcal K$ there exists an isometry (resp. a coisometry) $U$ from $\mathcal H$ into $\mathcal K$ such that both $U^*T$ and $T^{-1}U$ are in the associated nest algebra $Alg \mathcal N$ if and only if it is atomic (resp. countable).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.