Abstract

Aerosol optical depth (AOD), an important indicator of atmospheric aerosol load, characterizes the impacts of aerosol on radiation balance and atmospheric turbidity. The nesting Elterman model and a spatiotemporal linear mixed-effects (ST-LME) model, which is referred to as the ST-Elterman retrieval model (ST-ERM), was employed to improve the temporal resolution of AOD prediction. This model produces daily AOD in the Southern Central Hebei Plain (SCHP) region, China. Results show that the ST-ERM can effectively capture the variability of correlations between daily AOD and meteorological variables. After being validated against the daily Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD, the correlation coefficient between daily retrieved AOD from ST-ERM and MAIAC observations in 2017 reached 0.823. The validated Nash–Sutcliffe efficiency (Ef) of daily MAIAC AOD and ST-ERM-retrieved AOD is greater than or equal to 0.50 at 72 of the 95 stations in 2017. The relative error (Er) is less than 14% at all the stations except for Shijiazhuang (17.5%), Fengfeng (17.8%), and Raoyang (30.1%) stations. The ST-ERM significantly outperforms the conventional meteorology–AOD prediction approaches, such as the revised Elterman retrieval model (R-ERM). Thus, the ST-ERM shows great potential for daily AOD estimation in study regions with missingness of data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call