Abstract

Nestin is an intermediate filament protein transiently expressed in neural stem/progenitor cells. We previously demonstrated that outer root sheath (ORS) keratinocytes of adult hair follicles (HFs) in mice descend from nestin-expressing cells, despite being an epithelial cell lineage. This study determined the exact stage when nestin-expressing ORS stem/precursor cells or their descendants appear during HF morphogenesis, and whether they are present in adult HFs. Using Nes-Cre/CAG-CAT-EGFP mice, in which enhanced green fluorescent protein (EGFP) is expressed following Cre-based recombination driven by the nestin promoter, we found that EGFP+ cells appeared in the epithelial layer of embryonic HFs as early as the peg stage. EGFP+ cells in hair pegs were positive for keratin 14 (K14) and K5, but not vimentin, SOX2, SOX10, or S100 alpha 6. Tracing of tamoxifen-induced EGFP+ cells in postnatal Nes-CreERT2/CAG-CAT-EGFP mice revealed labeling of some isthmus HF epithelial cells in the first anagen stage. EGFP+ cells in adult HFs were not immunolabeled for K15, an HF multipotent stem cell marker. However, when hairs were depilated in Nes-CreERT2/CAG-CAT-EGFP mice to induce the anagen stage after tamoxifen injection, the majority of ORS keratinocytes in depilation-induced anagen HFs were labeled for EGFP. Our findings indicate that nestin-expressing unipotent progenitor cells capable of differentiating into ORS keratinocytes are present in HF primordia and adult HFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.