Abstract

We consider the problem of nonnegative tensor factorization. Our aim is to derive an efficient algorithm that is also suitable for parallel implementation. We adopt the alternating optimization framework and solve each matrix nonnegative least-squares problem via a Nesterov-type algorithm for strongly convex problems. We describe a parallel implementation of the algorithm and measure the attained speedup in a multicore computing environment. It turns out that the derived algorithm is a competitive candidate for the solution of very large-scale dense nonnegative tensor factorization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.