Abstract

Distributions of mosquito larvae likely are a consequence of multiple factors, although two commonly studied factors (quality of the larval environment and the terrestrial matrix in which these habitats reside) have rarely and simultaneously been varied in the field to understand distributions of larvae. We monitored aquatic containers of two leaf detritus levels within a forest, prairie, and industrial habitat across five months to understand the temporal and spatial colonization of aquatic invertebrates in Northcentral Illinois, USA. Data were collected monthly on mosquito populations and the composition of other invertebrates colonizing containers. Overall, six species of mosquitoes colonized containers, with Culex restuans and Aedes triseriatus having the highest relative abundances. There were strong seasonal abundance patterns for these two mosquito species, with the dominant species changing over time in the forest habitat. The responses of other mosquito taxa were more variable, with abundances reflective of either the terrestrial matrix or larval habitat quality. High detritus containers supported the highest abundances of most species encountered, regardless of habitat. Non-mosquito taxa were less common numerically, but analyses suggested that some taxa, such as syrphid larvae, often co-occurred with mosquitoes. Nested subset analysis indicated communities were strongly nested, and that both habitat type and detritus level were important in explaining nested patterns of aquatic invertebrates. Our data show that both the larval habitat and the surrounding terrestrial matrix shape patterns of container mosquitoes, and that other container invertebrates vary in similar ways as mosquitoes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.