Abstract

Trauma injuries continue to be the leading cause of mortality and morbidity among US citizens aged 44 years and under. Government agencies are often in charge of designing an effective trauma network in their region to provide prompt and definitive care to their citizens. This process is, however, largely manual, experience-based and often leads to a suboptimal network in terms of patient safety. To support effective decision making, we propose a Nested Trauma Network Design Problem (NTNDP), which can be characterized as a nested multi-level, multi-customer, multi-transportation, multi-criteria, capacitated model with the bi-objective of maximizing the weighted sum of equity and effectiveness in patient safety. We use mistriages (system-related under- and over-triages) as surrogates for patient safety. To add realism, we include intermediate trauma centers that are set up in many states in the US to serve as feeder centers to major trauma centers to improve patient safety and three criteria to mimic EMS’s on-scene decisions. We propose a ‘3-phase’ solution approach that first solves a relaxed version of the model, then solves a Constraint Satisfaction Problem, and then a modified version of the original optimization problem (if needed), all using a commercial solver. Our findings suggest that solutions are sensitive to (i) the proportion of assignments attributed to various destination determination criteria, (ii) distribution of trauma patients, and (iii) relative emphasis on equity vs. effectiveness. We also illustrate the use of our approach using real data from a midwestern US state; results show over 30% performance improvement in the objective value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call