Abstract

A probability distribution $\mu$ on $\mathbf{R}^d$ is selfdecomposable if its characteristic function $\widehat\mu(z), z\in\mathbf{R}^d$, satisfies that for any $b>1$, there exists an infinitely divisible distribution $\rho_b$ satisfying $\widehat\mu(z) = \widehat\mu(b^{-1}z)\widehat\rho_b(z)$. This concept has been generalized to the concept of $\alpha$-selfdecomposability by many authors in the following way. Let $\alpha\in\mathbf{R}$. An infinitely divisible distribution $\mu$ on $\mathbf{R}^d$ is $\alpha$-selfdecomposable, if for any $b>1$, there exists an infinitely divisible distribution $\rho_b$ satisfying $\widehat\mu(z) = \widehat\mu(b^{-1}z)^{b^{\alpha}}\widehat\rho_b(z)$. By denoting the class of all $\alpha$-selfdecomposable distributions on $\mathbf{R}^d$ by $L^{(\alpha)}(\mathbf{R}^d)$, we define in this paper a sequence of nested subclasses of $L^{(\alpha)}(\mathbf{R}^d)$, and investigate several properties of them by two ways. One is by using limit theorems and the other is by using mappings of infinitely divisible distributions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call