Abstract

We conjecture a combinatorial formula for the monomial expansion of the image of any Schur function under the Bergeron-Garsia nabla operator. The formula involves nested labelled Dyck paths weighted by area and a suitable “diagonal inversion” statistic. Our model includes as special cases many previous conjectures connecting the nabla operator to quantum lattice paths. The combinatorics of the inverse Kostka matrix leads to an elementary proof of our proposed formula when q = 1. We also outline a possible approach for proving all the extant nabla conjectures that reduces everything to the construction of sign-reversing involutions on explicit collections of signed, weighted objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.